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1. Introduction

In [5] and [2] the concept of symmetric linear
systems was introduced and the fundamental role
of the structure algebra was established. We recall
those concepts here for the benefit of the reader.
Let € be a class of linear systems where the
dimensions of the state and input spaces are fixed
and the (A, B) satisfy some set of relations. The
archetypical example is

s={[ % -5 5)

A, B, H real matrices}

which arises in a variety of contexts and specifi-

cally in the modeling of twin-lift helicopters [6].
The structure algebra of the class € is defined

to be the algebra :
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R(C)={(S,T):forall(4,B)eC
SA =4S, SB=BT).

The importance of the structure algebra stems
from the observation that because of commutati-
tively relations the state space and input space
become R(E)-modules and the maps 4 and B are
module homomorphisms. Thus if the structure of
R(E)-modules is known it is possible to reduce the
structure of the maps 4 and B.

In the case that the algebra R(Q) is semisimple,
a great deal is known [2]. However in [2] it was
shown that the symmetric systems with real semi-
simple structure algebra R(€) could always be
written as the direct sum of ordinary real systems,
ordinary complex systems and ‘ordinary’ quater-
nionic systems. Unfortunately there is not a well
established theory of linear systems over the
quaternions. The goal of this paper is to establish
a minimal amount of material so that the theory of
real, semisimple symmetric systems is somewhat
complete.

2. Linear algebra over the quaternions

2.1. In the following we let H denote the real
division algebra of quaternions. Recall that a typi-
cal quaternion # has the form

h=a+bi+cj+dk

where 1, 1, j, k form a basis for H as an R-vector
space. Multiplication in H is determined by the
formulas

2=j2=k?>=—1, ij=k, jk=i, ki=j.

Also recall that H can be represented as the set
of matrices of the form

a b ¢ d
-b a d —-c
—c —d a b
-d ¢ -b a
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Typically the matrix above represents the quatern-
ion a+bi+cj+dk.

Thinking of i, j, k as imaginaries we define a
bar conjugation on H by

h=TRe(h)+Im(h)—h+Re(h)—Im(h);

in terms of the matrix representation above the
bar conjugate is just the matrix transpose. So we
immediately find that

hohy=hyh,.
We also note that, if H is thought of as R* with
the 1. 1, J, k basis, the standard norm is just

Wl = (hi)'"* = (k)2

We extend this to obtain a standard norm on H”,
defined by

Al = (k)"

where h € H” is thought of as a column vector and
the asterisk denotes taking bar conjugate transpose
(the multiplication is just matrix multiplication).

There is another notion of conjugation on H
defined by

h*=a 'ha

where a € H is nonzero. Note that there are com-
mutation formulas

hihy=hyht:
=_hgr‘h]

= hlih,. (2.1.1)

We also define a conjugation on H” in the same
spirit by

h*=a ha

where a € H is nonzero, # € H” and the multipli-
cations are performed component by component.

2.2. By an H-vector space we just mean a right
module over H.

Example 2.2.1. H is itself an H-vector space in a
natural way. Scalar multiplication is just multipli-
cation on the right. Moreover, there is an isomor-
phism H ~ Hom(H, H) determined by sending A
to multiplication by % on the left.
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Example 2.2.2. The map H ® H — H defined by
x®a—ax

is a right H-module structure on H. It is isomor-
phic to the module structure on H in Example
2.2.1 via the bar conjugation map.

Example 2.2.3. H” is an H-vector space in virtue of
being a direct sum of H-vector spaces. We con-
tinue to think of vectors in H” as column vectors
and find that a linear map 4 :H"™ — H" is just an
m X n matrix of quaternions acting on the left of
vectors according to the usual matrix multiplica-
tion rules.

Now, since H is a division algebra, any right
H-module is a direct sum of copies of H in an
essentially unique way. So Example 2.2.3 gives a
good picture of a linear algebra over H.

Let us also note that H” has a natural choice of
H-bimodule structure extending the H-vector space
structure of 2.2.3. Consequently, given an isomor-
phism of H-vector spaces

A: M—->H"

we can extend the H-vector space structure on M
to an H-bimodule structure making 4 an isomor-
phism of H-bimodules. Unfortunately this struc-
ture 1s in general dependent in a nontrivial way
upon the map A. This observation essentially ex-
plains our choosing to focus attention on module
rather than bimodule structures: There are not
enough linear maps of H-modules. In particular
we have:

Proposition 2.2.4. 4 matrix A:H" — H" preserves
the canonical bimodule structures if and only if it has
real entries.

A somewhat stronger result can be proved as an
easy corollary of 2.2.4. It will be useful later.

Corollary 2.2.5. Ler A:H" - H". The canonical
H-vector space structure on H" extends to an H-bi-
module structure which is preserved by A if and only
if A is conjugate to a real matrix.

3. Quaternionic linear systems

3.1. In what follows, a system will be a time-in-
variant linear ordinary differential equation on
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H-vector spaces

x=Ax+Bu, xRN, ucMN. (3.1.1)

Typically we take for granted isomorphisms
N~H", M~H",
allowing us to think of 4 and B as matrices of
quaternions. We also use the notation (A4, B) as a
shorthand designation for (3.1.1).

Now the elementary theory of linear O.D.E.’s
over H is essentially the same as that of real or

complex O.D.E.’s. In particular, we find that there
is a well defined matrix exponential

"
C’A = Z —'A".
n'
n=0

Moreover, the system (3.1.1) has a unique solution,
denoted x(x,, u, t), which satisfies the initial con-
dition x(x,, u, t) = x, and which is given by

x(xq, u, t)=e""x, +/te("‘""Bu(s) ds.
0

Now, the formula just above enables one to
prove the following very important theorem.

Theorem 1. Let R , ; denote the set of states which
can be reached by the system (A, B) from the origin
in finite time. Then

Ryp=(A|B)=B+A4B+ - +4"'B
where B denotes the image of B.

Then, with the usual definition of controllabil-
ity in mind one can quickly prove:

Theorem 2. The space of matrix pairs
(A, B)e Mat, ., (H) X Mat,, ., (H),
with (A, B) controllable, is open and dense.
Just as easily, one can use Theorem 1 to prove

that controllability is preserved by the action of
the feedback groups, that is:

Theorem 3. Change of basis in either state or input
space preserves controllability.

Theorem 4. Controllability is preserved by state
space feedback.
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3.2. The classical eigenvalue criterion for the sta-
bility of a linear system over the real or complex
numbers has no clear analogue in the quaternionic
case. The reason for this is, in effect, that the
classical theory takes liberal advantage of the fact
that linear endomorphisms of classical vector
spaces preserve the canonical bimodule structures
available.

One way to circumvent this difficulty is to
appeal to some real or complex representation of a
system whose stability is in question. This ap-
proach is considered in [2]. Of course, the control
theorist is less interested in testing for stability
than in stabilizing controllable systems using
feedback. So we ought to prove:

Theorem 5. The orbit of any controllable system,
under the action of the feedback group, contains a
stable system.

In fact, we prove Theorem 5 as a corollary of
somewhat stronger results in the next section.

4. Stabilization and invariants

4.1. The key to stabilizing quaternionic systems is
a quaternionic Heymann lemma.

Lemma 4.1.1. Ler (A, B) be a controllable system
over H. Then, for any b in the image of B, there is a
feedback matrix F such that the single-input system
(A + BF, b) is controllable.

The proof of 4.1.1 is trivially adapted from the
proof of the real Heymann lemma. So we refer the
interested reader to [7], Lemma 3.2.

Given stabilizing feedback for a system (A4 +
BF, b) with b € B we can obtain stabilizing feed-
back for (A4, B) by an obvious lifting. So to prove
Theorem 5 we need only concern ourselves with
the feedback stabilization of single-input systems.
We begin by exhibiting a canonical form for con-
trollable single-input systems.

Lemma 4.1.2. Given a controllable single-input sys-

tem (A, b) over H, there is a unique matrix A’ of
the form
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0 1 0o - 0
0 1

: . .0 | =4

0 i i0 1

@ a o o a

n

such that for some P we have

P '4P=A" and P 'b=e,.

Proof. Let (A4, b) be controllable. By Theorem 1

there is a unique n-tuple «;,..., «, such that
0=A"b— A" 'ba; — - -+ — ba,,.

Now define a matrix P=[P, --- P,] by the for-
mulas

P, =A""'"p—A""2ba, - —ba,,
P,=A""2b—A"3bay--- —ba,,
P,_,=Ab-ba,, P, =b.

Then one easily checks that 4P = PA’ and that
Pe, = b. But by Theorem 1 the P, are independent,
so P is invertible; and, the proof is complete.

Let us refer to the «; in the above as the
characteristic indices of the system (A4, b) and
observe that we have immediately an index assig-
nability theorem.

Theorem 6. The characteristic indices of a controlla-
ble single-input system can be altered in an arbitrary
fashion by use of state-space feedback.

In particular Theorem 6 allows us to obtain real
indices. So Theorem 5 follows from its real ver-

sion.

4.2. Recall that in the real Heymann lemma the
characteristic indices a, ..., «, of the system (A4, b)
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are such that

”n n—1
N—aqN™ = —a,

is the characteristic polynomial of 4. One conse-
quence of this is that the «, are independent of the
choice of the vector b, so long as the system
remains controllable.

As it turns out, no such thing occurs in the
quaternionic case. It is easy to see why:

Suppose the single-input system (A, ) is con-
trollable. Suppose also that at least one character-
istic index of (A4, b) is nonreal, say «,. Then, there
are nonzero 8 € H such that
o, = o, (4.2.1)
Now, of course, the system (A, bB) is controllable.
But, its characteristic indices are o, ..., af. To see
this just note that by (2.1.1)

0=A"bp—A""'bBal — - -+ — bBaP.

So by (4.2.1), (A4, b) and (A4, bB) have distinct
characteristic indices.
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